Many machine learning systems are vulnerable to small perturbations made to inputs either at test time or at training time. This has received much recent interest on the empirical front due to applications where reliability and security are critical. However, theoretical understanding of algorithms that are robust to adversarial perturbations is limited. In this work we focus on Principal Component Analysis (PCA), a ubiquitous algorithmic primitive in machine learning. We formulate a natural robust variant of PCA where the goal is to find a low dimensional subspace to represent the given data with minimum projection error, that is in addition robust to small perturbations measured in $\ell_q$ norm (say $q=\infty$). Unlike PCA which is solvable in polynomial time, our formulation is computationally intractable to optimize as it captures a variant of the well-studied sparse PCA objective as a special case. We show the following results: -Polynomial time algorithm that is constant factor competitive in the worst-case with respect to the best subspace, in terms of the projection error and the robustness criterion. -We show that our algorithmic techniques can also be made robust to adversarial training-time perturbations, in addition to yielding representations that are robust to adversarial perturbations at test time. Specifically, we design algorithms for a strong notion of training-time perturbations, where every point is adversarially perturbed up to a specified amount. -We illustrate the broad applicability of our algorithmic techniques in addressing robustness to adversarial perturbations, both at training time and test time. In particular, our adversarially robust PCA primitive leads to computationally efficient and robust algorithms for both unsupervised and supervised learning problems such as clustering and learning adversarially robust classifiers.


翻译:许多机器学习系统很容易受到测试时间或培训时间对投入的小扰动的影响。 由于应用中可靠性和安全性至关重要,这在经验前最近引起了很大的兴趣。 但是,对对动态对对抗性扰动强的算法的理论理解有限。 在这项工作中,我们侧重于主构分析(PCA),这是机器学习中一个无处不在的原始算法。我们开发了一个自然强势的CPA变方,目标是找到一个低维的亚空间来代表给定数据,并有最低的预测性差错,这与以美元/ell_q美元标准衡量的小扰动(say $q_infty$)相比是强的。 与在多元性扰动性时的算法不同,我们的配法在计算中,当它捕捉到精心研究的稀疏漏的CPA目标变异。 我们展示了以下结果: oblyomyalalive 时间算法,在最坏的亚空间中不断具有竞争力,在预测性错误和稳健性的亚程标准方面,在预测性差的数值上都非常强的亚,在每次的运算方法上,在每次的精确性变数的数值上,在每次测试中,在每次的计算中,我们最强的计算中,在每次的计算中,我们最强的判变压压压式的计算中,在每次的算法式的计算中,在每次的计算中,在每次的计算中都的计算中,在每次的计算中,在精确算中,在精确性变的计算中,在每次的计算中,在精确性能的计算中,在精确性变的计算。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
52+阅读 · 2020年9月7日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
46+阅读 · 2020年7月4日
专知会员服务
53+阅读 · 2019年12月22日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
已删除
将门创投
6+阅读 · 2019年4月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月10日
Interpretable Adversarial Training for Text
Arxiv
5+阅读 · 2019年5月30日
Adversarial Reprogramming of Neural Networks
Arxiv
3+阅读 · 2018年6月28日
Arxiv
9+阅读 · 2018年1月4日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
52+阅读 · 2020年9月7日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
46+阅读 · 2020年7月4日
专知会员服务
53+阅读 · 2019年12月22日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
已删除
将门创投
6+阅读 · 2019年4月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员