Engineering more secure software has become a critical challenge in the cyber world. It is very important to develop methodologies, techniques, and tools for developing secure software. To develop secure software, software developers need to think like an attacker through mining software repositories. These aim to analyze and understand the data repositories related to software development. The main goal is to use these software repositories to support the decision-making process of software development. There are different vulnerability databases like Common Weakness Enumeration (CWE), Common Vulnerabilities and Exposures database (CVE), and CAPEC. We utilized a database called MITRE. MITRE ATT&CK tactics and techniques have been used in various ways and methods, but tools for utilizing these tactics and techniques in the early stages of the software development life cycle (SDLC) are lacking. In this paper, we use machine learning algorithms to map requirements to the MITRE ATT&CK database and determine the accuracy of each mapping depending on the data split.
翻译:在网络世界中,更安全的软件工程已成为一项关键的挑战。开发安全软件的方法、技术和工具非常重要。为了开发安全软件,软件开发者需要通过采矿软件库进行思考,以便分析和理解与软件开发有关的数据储存库。主要目标是利用这些软件储存库支持软件开发的决策进程。有不同的弱点数据库,如共同弱点计算(CWE)、共同脆弱性和暴露数据库(CVE)和CAPEC。我们利用了一个称为MITRE的数据库。MITREAT和CK的战术和技术已被以各种方式和方法使用,但在软件开发生命周期(SDLC)的早期阶段缺乏使用这些战术和技术的工具。在本文中,我们使用机器学习算法来绘制MITRE ATT&CK数据库的要求,并根据数据分割确定每次绘图的准确性。