In this paper, we propose a computer-oriented method of construction of optimal group sequential hypothesis tests with variable group sizes. In particular, for independent and identically distributed observations we obtain the form of optimal group sequential tests which turn to be a particular case of sequentially planned probability ratio tests (SPPRTs, Schmitz, 1993) . Formulas are given for computing the numerical characteristics of general SPPRTs, like error probabilities, average sampling cost, etc. A numerical method of designing the optimal tests and evaluation of the performance characteristics is proposed, and computer algorithms of its implementation are developed. For a particular case of sampling from a Bernoulli population, the proposed method is implemented in R programming language, the code is available in a public GitHub repository. The proposed method is compared numerically with other known sampling plans.


翻译:在这篇论文中,我们提出了一种计算机导向的构建变量组大小的最优分组顺序假设检验的方法。特别地,对于独立同分布的观察值,我们获得了一种最优分组顺序测试的形式,这种形式是顺序计划概率比测试(SPPRTs,Schmitz,1993)的一个特例。给出了计算一般SPPRT的数字特征的公式,如误差概率、平均抽样成本等。提出了一种设计最优测试和评估性能特征的数值方法,并开发了其实现的计算机算法。对于从Bernoulli群体进行抽样的特定情况,所提出的方法使用R编程语言实现,其代码可在公共GitHub存储库中得到。将所提出的方法与其他已知的抽样计划进行了数值比较。

0
下载
关闭预览

相关内容

假设检验是推论统计中用于检验统计假设的一种方法。而“统计假设”是可通过观察一组随机变量的模型进行检验的科学假说。一旦能估计未知参数,就会希望根据结果对未知的真正参数值做出适当的推论。 统计上对参数的假设,就是对一个或多个参数的论述。而其中欲检验其正确性的为零假设(null hypothesis),零假设通常由研究者决定,反映研究者对未知参数的看法。相对于零假设的其他有关参数之论述是备择假设(alternative hypothesis),它通常反应了执行检定的研究者对参数可能数值的另一种(对立的)看法(换句话说,备择假设通常才是研究者最想知道的)。 假设检验的种类包括:t检验,Z检验,卡方检验,F检验等等。
【图神经网络实用介绍】A practical introduction to GNNs - Part 1
因果推断,Causal Inference:The Mixtape
专知会员服务
105+阅读 · 2021年8月27日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
61+阅读 · 2020年3月4日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月17日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员