In many applications, the integrals and derivatives of signals carry valuable information (e.g., cumulative success over a time window, the rate of change) regarding the behavior of the underlying system. In this paper, we extend the expressiveness of Signal Temporal Logic (STL) by introducing predicates that can define rich properties related to the integral and derivative of a signal. For control synthesis, the new predicates are encoded into mixed-integer linear inequalities and are used in the formulation of a mixed-integer linear program to find a trajectory that satisfies an STL specification. We discuss the benefits of using the new predicates and illustrate them in a case study showing the influence of the new predicates on the trajectories of an autonomous robot.
翻译:在许多应用中,信号的集成物和衍生物含有关于基础系统行为的宝贵信息(例如,在一个时间窗口的累积成功率、变化率),在本文件中,我们通过引入能够界定与信号的集成和衍生物有关的丰富属性的前提来扩展信号时空逻辑(STL)的清晰度。为了控制合成,新上游被编码成混合整数线性不平等,并用于制定混合整数线性程序,以找到符合STL规格的轨迹。我们讨论了使用新前提的好处,并在一项表明新前提对自主机器人轨迹的影响的案例研究中加以说明。