The singular subspaces perturbation theory is of fundamental importance in probability and statistics. It has various applications across different fields. We consider two arbitrary matrices where one is a leave-one-column-out submatrix of the other one and establish a novel perturbation upper bound for the distance between two corresponding singular subspaces. It is well-suited for mixture models and results in a sharper and finer statistical analysis than classical perturbation bounds such as Wedin's Theorem. Powered by this leave-one-out perturbation theory, we provide a deterministic entrywise analysis for the performance of the spectral clustering under mixture models. Our analysis leads to an explicit exponential error rate for the clustering of sub-Gaussian mixture models. For the mixture of isotropic Gaussians, the rate is optimal under a weaker signal-to-noise condition than that of L\"offler et al. (2021).
翻译:单子空间扰动理论在概率和统计中具有根本重要性。 它在不同领域有各种应用。 我们考虑两个任意矩阵, 其中一个是另一个的左侧一列外子矩阵, 并为两个对应的单形子空间之间的距离建立一个新颖的扰动上限。 它非常适合混合模型, 并比Wedin's Theorem等典型的扰动界限进行更敏锐和更精细的统计分析。 由这个左侧一列外扰动理论驱动, 我们为混合模型下的频谱集群的性能提供了决定性的入门分析。 我们的分析导致亚伽西西语混合物模型的集群明显指数误差率。 对于异形高斯人混合物来说, 在比L\"offler et al. (2021) 更弱的信号到噪音条件下, 比率是最佳的。