This paper introduces a general framework for explicitly constructing universal deep neural models with inputs from a complete, separable, and locally-compact metric space $\mathcal{X}$ and outputs in the Wasserstein-1 $\mathcal{P}_1(\mathcal{Y})$ space over a complete and separable metric space $\mathcal{Y}$. We find that any model built using the proposed framework is dense in the space $C(\mathcal{X},\mathcal{P}_1(\mathcal{Y}))$ of continuous functions from $\mathcal{X}$ to $\mathcal{P}_1(\mathcal{Y})$ in the corresponding uniform convergence on compacts topology, quantitatively. We identify two methods in which the curse of dimensionality can be broken. The first approach constructs subsets of $C(\mathcal{X},\mathcal{P}_1(\mathcal{Y}))$ consisting of functions that can be efficiently approximated. In the second approach, given any fixed $f \in C(\mathcal{X},\mathcal{P}_1(\mathcal{Y}))$, we build non-trivial subsets of $\mathcal{X}$ on which $f$ can be efficiently approximated. The results are applied to three open problems lying at the interface of applied probability and computational learning theory. We find that the proposed models can approximate any regular conditional distribution of a $\mathcal{Y}$-valued random element $Y$ depending on an $\mathcal{X}$-valued random element $X$, with arbitrarily high probability. The proposed models are also shown to be capable of generically expressing the aleatoric uncertainty present in most randomized machine learning models. The proposed framework is used to derive an affirmative answer to the open conjecture of Bishop (1994); namely: mixture density networks are generic regular conditional distributions. Numerical experiments are performed in the contexts of extreme learning machines, randomized DNNs, and heteroscedastic regression.


翻译:本文引入了一个用于明确构建通用深度神经模型的一般框架, 其投入来自完整、 可分解 和本地兼容的分子, 空间 $\ mathcal{X} 美元 和瓦塞斯坦-1$\ mathcal{P\1 (mathcal{Y}) 美元空间, 完整且可分解的 空间 $\ mathcal{ Y} 。 我们发现, 任何使用拟议框架构建的模型, 空间 $C (mathcal{X}, 任意=pathal{ pácal{ (mathcal{Y} ), 持续功能$macal $cal_ climate{ 美元 美元 美元, 数字=modemodeal_ a macreal_ dismal_ dismal_ a macreal_ dismal_ dismal_ a preal_ a preal_ a preal_ a promodeal_ a macial_ a messal_ a messal_ a messal_ mode a modeal_ brocial_ a mode a modeal_ modeal_ a mode a mode a modeal_ mode a mode a modeal_ mode a mode a mode a modeal_ modeal_ modeal_ a modeal_ modeal_ modeal_ modeal_ modeal_ modeal_ modeal_ modeal_ momental_ a ma modeal_ modeal_ modeal_ modeal_ mode a a a a a mode a mode a a a mode a mode a modeal_ modeal_ mode a modeal_ moal_ ma a mos a mos a mos a moal_ modeal_ mode a modeal_ mode a mo ma modeal_ ma

0
下载
关闭预览

相关内容

专知会员服务
77+阅读 · 2021年3月16日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
249+阅读 · 2020年5月18日
【课程推荐】 深度学习中的几何(Geometry of Deep Learning)
专知会员服务
58+阅读 · 2019年11月10日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年7月8日
Arxiv
0+阅读 · 2021年7月5日
Arxiv
0+阅读 · 2021年7月2日
Arxiv
5+阅读 · 2018年5月31日
VIP会员
相关VIP内容
专知会员服务
77+阅读 · 2021年3月16日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
249+阅读 · 2020年5月18日
【课程推荐】 深度学习中的几何(Geometry of Deep Learning)
专知会员服务
58+阅读 · 2019年11月10日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员