Modal logic with propositional quantifiers (i.e. second-order propositional modal logic (SOPML)) has been considered since the early time of modal logic. Its expressive power and complexity are high, and its van-Benthem-Rosen theorem and Goldblatt-Thomason theorem have been proved by ten Cate (2006). However, the Sahlqvist theory of SOPML has not been considered in the literature. In the present paper, we fill in this gap. We develop the Sahlqvist correspondence theory for SOPML, which covers and properly extends existing Sahlqvist formulas in basic modal logic. We define the class of Sahlqvist formulas for SOMPL step by step in a hierarchical way, each formula of which is shown to have a first-order correspondent over Kripke frames effectively computable by an algorithm $ALBA^{SOMPL}$. In addition, we show that certain $\Pi_2$-rules correspond to $\Pi_2$-Sahlqvist formulas in SOMPL, which further correspond to first-order conditions, and that even for very simple SOMPL Sahlqvist formulas, they could already be non-canonical.
翻译:SOPML Sohlqvist 函授理论(即二等标语模型逻辑 (SOPML)) 早在模式逻辑早期就被考虑过,其表达力和复杂性很高,其范-班特姆-罗森理论和戈德布拉特-托马森理论得到10个Cate(2006年)的证明,然而,SOPML的Sahlqvist理论在文献中没有被考虑过。在本文件中,我们填补了这一空白。我们为SOPML开发了SOPML Sahlqvist 函授理论,该理论以基本模式逻辑覆盖并适当地扩展了现有的Sahlqvist公式。我们以等级的方式界定了SOMPL级的Sohlqvist公式类别,其中的每一种公式都有一等通讯通讯器,由一个算法 $ALBA ⁇ SOMPL} 有效理解。此外,我们显示,某些$Pi_2$-rules-rules 相当于美元-Pi_2$-Sahlqvist 公式中的第一个条件,这在SOMPL中可以进一步符合SOMPL的非条件。