In the context of large-angle cone-beam tomography (CBCT), we present a practical iterative reconstruction (IR) scheme designed for rapid convergence as required for large datasets. The robustness of the reconstruction is provided by the "space-filling" source trajectory along which the experimental data is collected. The speed of convergence is achieved by leveraging the highly isotropic nature of this trajectory to design an approximate deconvolution filter that serves as a pre-conditioner in a multi-grid scheme. We demonstrate this IR scheme for CBCT and compare convergence to that of more traditional techniques.


翻译:在大角锥形波束断层摄影(CBCT)方面,我们提出了一个实用的迭代重建(IR)计划,旨在根据大型数据集的需要迅速趋同,重建的稳健性由收集实验数据的“空间填充”源轨迹提供,通过利用该轨迹高度的北半球性质设计一个大致的分解过滤器来达到趋同速度,该过滤器是多电网计划中的一个先决条件。我们展示了这一ICR计划,用于CBCT,并比较与较传统技术的趋同。

0
下载
关闭预览

相关内容

信息检索杂志(IR)为信息检索的广泛领域中的理论、算法分析和实验的发布提供了一个国际论坛。感兴趣的主题包括对应用程序(例如Web,社交和流媒体,推荐系统和文本档案)的搜索、索引、分析和评估。这包括对搜索中人为因素的研究、桥接人工智能和信息检索以及特定领域的搜索应用程序。 官网地址:https://dblp.uni-trier.de/db/journals/ir/
【2021新书】编码艺术,Coding Art,284页pdf
专知会员服务
74+阅读 · 2021年1月10日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
120+阅读 · 2019年12月9日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员