Hardware compute power has been growing at an unprecedented rate in recent years. The utilization of such advancements plays a key role in producing better results in less time -- both in academia and industry. However, merging the existing hardware with the latest hardware within the same ecosystem poses a challenging task. One of the key challenges, in this case, is varying compute power. In this paper, we consider the training of deep neural networks on a distributed system of workers with varying compute power. A naive implementation of synchronous distributed training will result in the faster workers waiting for the slowest worker to complete processing. To mitigate this issue, we propose to dynamically adjust the data assigned for each worker during the training. We assign each worker a partition of total data proportional to its computing power. Our experiments show that dynamically adjusting the data partition helps to improve the utilization of the system and significantly reduces the time taken for training. Code is available at the repository: \url{https://github.com/vineeths96/Heterogeneous-Systems}.


翻译:近年来,硬件计算能力以前所未有的速度增长。在学术界和工业界,这种进步的利用对于在更短的时间内产生更好的结果起着关键的作用。然而,将现有硬件与同一生态系统内的最新硬件合并是一项具有挑战性的任务。在这种情况下,关键挑战之一是不同的计算能力。在本文中,我们考虑在不同的计算能力工人分布系统中对深神经网络进行培训。天真地实施同步分布式培训将导致工人更快地等待最慢的工人完成处理。为了缓解这一问题,我们提议动态地调整培训中分配给每个工人的数据。我们给每个工人分配一个与其计算能力成比例的总数据分割。我们的实验表明,动态地调整数据分割有助于改进对系统的利用,并大大减少培训时间。可在存储处查阅守则:https://github.com/vineeths96/hetergenels-Systems}。

0
下载
关闭预览

相关内容

专知会员服务
103+阅读 · 2021年8月23日
专知会员服务
36+阅读 · 2021年7月17日
【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
125+阅读 · 2021年6月4日
专知会员服务
14+阅读 · 2021年5月21日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年12月9日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员