Workflow scheduling is a long-studied problem in parallel and distributed computing (PDC), aiming to efficiently utilize compute resources to meet user's service requirements. Recently proposed scheduling methods leverage the low response times of edge computing platforms to optimize application Quality of Service (QoS). However, scheduling workflow applications in mobile edge-cloud systems is challenging due to computational heterogeneity, changing latencies of mobile devices and the volatile nature of workload resource requirements. To overcome these difficulties, it is essential, but at the same time challenging, to develop a long-sighted optimization scheme that efficiently models the QoS objectives. In this work, we propose MCDS: Monte Carlo Learning using Deep Surrogate Models to efficiently schedule workflow applications in mobile edge-cloud computing systems. MCDS is an Artificial Intelligence (AI) based scheduling approach that uses a tree-based search strategy and a deep neural network-based surrogate model to estimate the long-term QoS impact of immediate actions for robust optimization of scheduling decisions. Experiments on physical and simulated edge-cloud testbeds show that MCDS can improve over the state-of-the-art methods in terms of energy consumption, response time, SLA violations and cost by at least 6.13, 4.56, 45.09 and 30.71 percent respectively.


翻译:工作流时间安排是一个长期研究的平行和分布计算问题,目的是高效率地利用计算资源,满足用户的服务需求。最近提出的时间安排方法利用边缘计算平台的低响应时间,优化应用服务质量。然而,移动边缘云层系统中的工作流程应用程序的时间安排具有挑战性,因为计算差异性、移动设备延迟变化以及工作量资源要求的不稳定性,为了克服这些困难,必须制定具有远见卓识的优化计划,高效率地模拟QOS目标。在这项工作中,我们提议 MCDS:利用深层超载计算模型进行蒙特卡洛学习,以高效地安排移动边缘计算系统中的工作流程应用程序。 MCDS是一种人工智能(AI)方法,采用树基搜索战略和深神经网络模型来估计立即行动的长期QOS影响,以稳健地优化时间安排决定。 在45.09号、30.09号实物和模拟边缘测试床进行实验,显示在45.09号、30.09号、30号SLSDS的违反能源规定方面,可以改进州一级的成本方法。

0
下载
关闭预览

相关内容

【干货书】机器学习Primer,122页pdf
专知会员服务
107+阅读 · 2020年10月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2022年2月10日
Arxiv
35+阅读 · 2019年11月7日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员