We consider the complexity of computing Chow forms and their generalization to multiprojective spaces. We develop a deterministic algorithm using resultants, and obtain a single exponential complexity upper bound. Earlier computational results for Chow forms were in the arithmetic complexity model; our result represents the first Boolean complexity bound. We also extend our algorithm to multiprojective Chow forms and obtain the first computational result in this setting. The motivation for our work comes from incidence geometry where intriguing problems for computational algebraists remain open.
翻译:我们考虑了计算周会表格的复杂性及其在多预测空间的普及性。我们开发了一种使用结果人的确定性算法,并获得了单一的指数复杂性。周会表格的早期计算结果在算术复杂性模型中;我们的计算结果代表着第一种布尔式复杂程度。我们还将我们的算法扩大到多预测的周会表格,并在这一背景下获得第一个计算结果。我们工作的动机来自几何学,在几何学中,计算代数学家们仍然存在着令人感兴趣的问题。