We introduce Nocturne, a new 2D driving simulator for investigating multi-agent coordination under partial observability. The focus of Nocturne is to enable research into inference and theory of mind in real-world multi-agent settings without the computational overhead of computer vision and feature extraction from images. Agents in this simulator only observe an obstructed view of the scene, mimicking human visual sensing constraints. Unlike existing benchmarks that are bottlenecked by rendering human-like observations directly using a camera input, Nocturne uses efficient intersection methods to compute a vectorized set of visible features in a C++ back-end, allowing the simulator to run at over 2000 steps-per-second. Using open-source trajectory and map data, we construct a simulator to load and replay arbitrary trajectories and scenes from real-world driving data. Using this environment, we benchmark reinforcement-learning and imitation-learning agents and demonstrate that the agents are quite far from human-level coordination ability and deviate significantly from the expert trajectories.
翻译:我们引入了 2D 驱动模拟器, 用于在部分可观察性下调查多剂协调的新型 2D 驱动模拟器。 Ncuturne 的焦点是, 在不使用计算机视像和图像特征提取的计算包进行真实世界多剂环境中的推断和思维理论研究, 而不用计算机视距的计算包进行计算。 这个模拟器的代理器只观测到一个障碍的场景, 模仿人类视觉感知限制。 与现有的基准不同, 现有基准通过直接使用摄像头输入来进行类似人类的观测, Norturne 使用高效的交叉方法来计算 C+ 后端的一组可视特征, 允许模拟器在2000 年每秒的阶梯运行。 我们使用开放源轨迹和地图数据, 构建一个模拟器从真实世界驱动数据中装载和重弹取任意轨迹和场景。 我们用这种环境来衡量强化学习和模仿的代理器, 并证明这些代理器离 人类层面的协调能力很远, 并且明显偏离专家轨道 。