Fiber-reinforced composites (FRC) provide structural systems with unique features that appeal to various civilian and military sectors. Often, one needs to modulate the temperature field to achieve the intended functionalities (e.g., self-healing) in these lightweight structures. Vascular-based active cooling offers one efficient way of thermal regulation in such material systems. However, the thermophysical properties (e.g., thermal conductivity, specific heat capacity) of FRC and their base constituents depend on temperature, and such structures are often subject to a broad spectrum of temperatures. Notably, prior active cooling modeling studies did not account for such temperature dependence. Thus, the primary aim of this paper is to reveal the effect of temperature-dependent material properties -- obtained via material characterization -- on the qualitative and quantitative behaviors of active cooling. By applying mathematical analysis and conducting numerical simulations, we show this dependence does not affect qualitative attributes, such as minimum and maximum principles (in the same spirit as \textsc{Hopf}'s results for elliptic partial differential equations). However, the dependence slightly affects quantitative results, such as the mean surface temperature and thermal efficiency. The import of our study is that it provides a deeper understanding of thermal regulation systems under practical scenarios and can guide researchers and practitioners in perfecting associated designs.
翻译:暂无翻译