In this paper, we study the problem of learning an unknown quantum circuit of a certain structure. If the unknown target is an $n$-qubit Clifford circuit, we devise an efficient algorithm to reconstruct its circuit representation by using $O(n^2)$ queries to it. For decades, it has been unknown how to handle circuits beyond the Clifford group since the stabilizer formalism cannot be applied in this case. Herein, we study quantum circuits of $T$-depth one on the computational basis. We show that the output state of a $T$-depth one circuit can be represented by a stabilizer pseudomixture with a specific algebraic structure. Using Pauli and Bell measurements on copies of the output states, we can generate a hypothesis circuit that is equivalent to the unknown target circuit on computational basis states as input. If the number of $T$ gates of the target is of the order $O({{\log n}})$, our algorithm requires $O(n^2)$ queries to it and produces its equivalent circuit representation on the computational basis in time $O(n^3)$. Using further additional $O(4^{3n})$ classical computations, we can derive an exact description of the target for arbitrary input states. Our results greatly extend the previously known facts that stabilizer states can be efficiently identified based on the stabilizer formalism.
翻译:在本文中, 我们研究学习某个结构的未知量子电路的问题。 如果未知目标为一美元- qubit 克里福尔德电路, 我们设计一个高效的算法, 通过使用$O (n2)2美元查询来重建其电路代表。 几十年来, 我们一直不知道如何在克里福德组之外处理电路, 因为在此情况下无法应用稳定剂正规化。 在这里, 我们根据计算法研究一个深度为$T的量子电路。 我们显示, 一个深度为$T的电路的输出状态可以用一个具有特定代数结构的固定剂假体来代表。 利用对输出状态副本的保利和贝尔测量, 我们可以产生一个相当于计算基础状态不明目标电路的假设电路路。 如果目标门的美元数量是美元( ⁇ n) $(n2美元) 的顺序, 我们的算法需要$O( n2) $, 并且用其等量的电路路路路路路代表可以用一个特定的代法 $O (n3) 3美元 来代表一个特定的代数 。 进一步根据我们已知的正正态数据分析结果进行一个已知的任意分析结果 。