We study the estimation of the high-dimensional covariance matrix andits eigenvalues under dynamic volatility models. Data under such modelshave nonlinear dependency both cross-sectionally and temporally. We firstinvestigate the empirical spectral distribution (ESD) of the sample covariancematrix under scalar BEKK models and establish conditions under which thelimiting spectral distribution (LSD) is either the same as or different fromthe i.i.d. case. We then propose a time-variation adjusted (TV-adj) sample co-variance matrix and prove that its LSD follows the same Marcenko-Pasturlaw as the i.i.d. case. Based on the asymptotics of the TV-adj sample co-variance matrix, we develop a consistent population spectrum estimator and an asymptotically optimal nonlinear shrinkage estimator of the unconditionalcovariance matrix


翻译:我们根据动态波动模型研究高维共变量矩阵和其天体值的估计。这些模型下的数据具有非线性依赖性,横跨和时间上都是。我们首先根据标量 BEKK模型对样本共变量模型的实验光谱分布(ESD)进行研究,并确定限制光谱分布(LSD)与i.d.案例相同或不同的条件。然后我们提议一个经时间变量调整的(TV-adj)样本共变量矩阵,并证明其LSD遵循与i.i.i.d.案例相同的Marcenko-Pasturlaw。根据TV-add样本共变量矩阵的随机特征,我们开发一个一致的人口频谱估计器,并开发一个无条件变量矩阵的无症状最佳非线性非线性缩算器。

0
下载
关闭预览

相关内容

【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2023年1月17日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员