We study the estimation of the high-dimensional covariance matrix andits eigenvalues under dynamic volatility models. Data under such modelshave nonlinear dependency both cross-sectionally and temporally. We firstinvestigate the empirical spectral distribution (ESD) of the sample covariancematrix under scalar BEKK models and establish conditions under which thelimiting spectral distribution (LSD) is either the same as or different fromthe i.i.d. case. We then propose a time-variation adjusted (TV-adj) sample co-variance matrix and prove that its LSD follows the same Marcenko-Pasturlaw as the i.i.d. case. Based on the asymptotics of the TV-adj sample co-variance matrix, we develop a consistent population spectrum estimator and an asymptotically optimal nonlinear shrinkage estimator of the unconditionalcovariance matrix
翻译:我们根据动态波动模型研究高维共变量矩阵和其天体值的估计。这些模型下的数据具有非线性依赖性,横跨和时间上都是。我们首先根据标量 BEKK模型对样本共变量模型的实验光谱分布(ESD)进行研究,并确定限制光谱分布(LSD)与i.d.案例相同或不同的条件。然后我们提议一个经时间变量调整的(TV-adj)样本共变量矩阵,并证明其LSD遵循与i.i.i.d.案例相同的Marcenko-Pasturlaw。根据TV-add样本共变量矩阵的随机特征,我们开发一个一致的人口频谱估计器,并开发一个无条件变量矩阵的无症状最佳非线性非线性缩算器。