We introduce a novel covariance estimator for portfolio selection that adapts to the non-stationary or persistent heteroskedastic environments of financial time series by employing exponentially weighted averages and nonlinearly shrinking the sample eigenvalues through cross-validation. Our estimator is structure agnostic, transparent, and computationally feasible in large dimensions. By correcting the biases in the sample eigenvalues and aligning our estimator to more recent risk, we demonstrate that our estimator performs well in large dimensions against existing state-of-the-art static and dynamic covariance shrinkage estimators through simulations and with an empirical application in active portfolio management.
翻译:我们引入了一个新的组合选择共变量估算器,通过使用指数加权平均值和通过交叉校验非线性缩小样本的单项值,适应金融时序的非静止或持久性非静止或持续热解型环境。我们的估算器是结构不可知性、透明且计算上可行的大维。通过纠正样本单项值的偏差,并使估算器与最近的风险相匹配,我们证明我们的估算器在与现有最先进的静态和动态共变收缩估计器相比,通过模拟和在活跃组合管理中的经验应用,在较大层面表现良好。