We propose a novel cost aggregation network, called Cost Aggregation with Transformers (CATs), to find dense correspondences between semantically similar images with additional challenges posed by large intra-class appearance and geometric variations. Compared to previous hand-crafted or CNN-based methods addressing the cost aggregation stage, which either lack robustness to severe deformations or inherit the limitation of CNNs that fail to discriminate incorrect matches due to limited receptive fields, CATs explore global consensus among initial correlation map with the help of some architectural designs that allow us to exploit full potential of self-attention mechanism. Specifically, we include appearance affinity modelling to disambiguate the initial correlation maps and multi-level aggregation to benefit from hierarchical feature representations within Transformer-based aggregator, and combine with swapping self-attention and residual connections not only to enforce consistent matching, but also to ease the learning process. We conduct experiments to demonstrate the effectiveness of the proposed model over the latest methods and provide extensive ablation studies. Code and trained models will be made available at https://github.com/SunghwanHong/CATs.


翻译:我们提议建立一个新的成本汇总网络,称为“与变异器的成本聚合”,以寻找在结构上相似的图像与大型类内外貌和几何差异带来的额外挑战之间的密集对应关系。与以前针对成本汇总阶段的手工制作或有线电视新闻网方法相比,这些方法要么对严重变形缺乏稳健性,要么继承了由于有限的可接受领域而不能区分不正确匹配的CNN的限制。 CAT在一些建筑设计的帮助下,探索初始相关地图之间的全球共识,使我们能够充分利用自留机制的潜力。具体地说,我们包括在初始相关地图和多层次汇总上展示亲近性模型,以便从基于变异器的聚合器中的等级特征展示中受益,同时进行自我注意和剩余联系的互换,不仅是为了执行一致的匹配,而且是为了便利学习过程。我们进行实验,以展示拟议模型相对于最新方法的有效性并提供广泛的反动研究。我们将在https://github.com/SunghwanHong/CATs上提供守则和经过培训的模式。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
DARPA可解释人工智能
专知会员服务
126+阅读 · 2020年12月22日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
VIP会员
相关VIP内容
DARPA可解释人工智能
专知会员服务
126+阅读 · 2020年12月22日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Top
微信扫码咨询专知VIP会员