Deep Reinforcement Learning (DRL) underlies in a simulated environment and optimizes objective goals. By extending the conventional interaction scheme, this paper proffers gym-ds3, a scalable and reproducible open environment tailored for a high-fidelity Domain-Specific System-on-Chip (DSSoC) application. The simulation corroborates to schedule hierarchical jobs onto heterogeneous System-on-Chip (SoC) processors and bridges the system to reinforcement learning research. We systematically analyze the representative SoC simulator and discuss the primary challenging aspects that the system (1) continuously generates indefinite jobs at a rapid injection rate, (2) optimizes complex objectives, and (3) operates in steady-state scheduling. We provide exemplary snippets and experimentally demonstrate the run-time performances on different schedulers that successfully mimic results achieved from the standard DS3 framework and real-world embedded systems.
翻译:深度强化学习(DRL)是模拟环境中的基础,优化了客观目标。通过扩展常规互动计划,本文件提供了健身房3号,这是一个可缩放和可复制的开放环境,专门用于高忠诚度域分化系统对芯片(DSSC)的应用。模拟证实了将等级工作安排在多式系统对芯片(SOC)处理器上,并将系统连接到加强学习研究。我们系统地分析代表模拟器,并讨论系统(1) 以快速注射速度持续创造无限期工作的主要挑战方面,(2) 优化复杂目标,(3) 稳定运行。我们提供了模范片段,实验性地展示了不同调度器的运行时间性表现,成功模拟了标准DS3框架和实体世界嵌入系统所取得的结果。