In this paper we propose a novel image representation called face X-ray for detecting forgery in face images. The face X-ray of an input face image is a greyscale image that reveals whether the input image can be decomposed into the blending of two images from different sources. It does so by showing the blending boundary for a forged image and the absence of blending for a real image. We observe that most existing face manipulation methods share a common step: blending the altered face into an existing background image. For this reason, face X-ray provides an effective way for detecting forgery generated by most existing face manipulation algorithms. Face X-ray is general in the sense that it only assumes the existence of a blending step and does not rely on any knowledge of the artifacts associated with a specific face manipulation technique. Indeed, the algorithm for computing face X-ray can be trained without fake images generated by any of the state-of-the-art face manipulation methods. Extensive experiments show that face X-ray remains effective when applied to forgery generated by unseen face manipulation techniques, while most existing face forgery detection algorithms experience a significant performance drop.
翻译:在本文中,我们提出一个名为面部X光的新图像图解,用于在脸部图像中检测伪造。输入面部X光的面部X光是一个灰度图像,显示输入图像是否可以分解成来自不同来源的两种图像。它通过显示伪造图像的混合边界和没有混合真实图像来做到这一点。我们观察到,大多数现有的面部操纵方法都有一个共同的步骤:将变换的面部与现有背景图像混在一起。因此,面部X光为发现大多数现有面部操纵算法产生的伪造提供了一种有效方法。面部X光一般而言,它只假设存在混合步骤,而不依赖任何与特定面部操纵技术相关的艺术品的知识。事实上,计算面部X光的算法可以不经过任何最先进的面部操纵方法产生的假图像的培训。广泛的实验显示,面部X光在应用由视觉操纵技术产生的伪造时仍然有效,而大多数现有的面部篡改算法则经历显著的性能下降。