Reinforcement Learning has emerged as a strong alternative to solve optimization tasks efficiently. The use of these algorithms highly depends on the feedback signals provided by the environment in charge of informing about how good (or bad) the decisions made by the learned agent are. Unfortunately, in a broad range of problems the design of a good reward function is not trivial, so in such cases sparse reward signals are instead adopted. The lack of a dense reward function poses new challenges, mostly related to exploration. Imitation Learning has addressed those problems by leveraging demonstrations from experts. In the absence of an expert (and its subsequent demonstrations), an option is to prioritize well-suited exploration experiences collected by the agent in order to bootstrap its learning process with good exploration behaviors. However, this solution highly depends on the ability of the agent to discover such trajectories in the early stages of its learning process. To tackle this issue, we propose to combine imitation learning with intrinsic motivation, two of the most widely adopted techniques to address problems with sparse reward. In this work intrinsic motivation is used to encourage the agent to explore the environment based on its curiosity, whereas imitation learning allows repeating the most promising experiences to accelerate the learning process. This combination is shown to yield an improved performance and better generalization in procedurally-generated environments, outperforming previously reported self-imitation learning methods and achieving equal or better sample efficiency with respect to intrinsic motivation in isolation.


翻译:强化学习是有效解决优化任务的有力替代方法。这些算法的使用高度取决于负责告知被学习者所作决定的好坏的环境提供的反馈信号。不幸的是,在一系列广泛的问题中,良好的奖励功能的设计并非微不足道,因此在这类情况下采用微弱的奖励信号。缺乏密集的奖励功能带来了新的挑战,大多与探索有关。模拟学习通过利用专家的示范来解决这些问题。在缺乏专家(以及随后的演示)的情况下,一种选择是优先考虑代理人收集的适合的勘探经验,以便用良好的探索行为引导其学习过程。然而,这一解决办法在很大程度上取决于代理人在学习过程的早期阶段发现这种良好的奖励功能的能力,因此,我们建议将模仿学习与内在动机相结合,这是最广泛采用的两种解决微弱奖励问题的技术。在这项工作中,利用内在动机鼓励代理人根据好奇心探索环境,而模仿学习能够重复最有希望的经验,从而加速以往学习过程的自我学习过程。这种学习方式与改进的学习过程的内在动力相结合,在改进之前的学习过程中显示一种更好的学习方式。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月2日
Arxiv
0+阅读 · 2023年2月2日
Arxiv
21+阅读 · 2022年11月8日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
12+阅读 · 2021年6月21日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员