The analysis of contingency tables is a powerful statistical tool used in experiments with categorical variables. This study improves parts of the theory underlying the use of contingency tables. Specifically, the linkage disequilibrium parameter as a measure of two-way interactions applied to three-way tables makes it possible to quantify Simpsons paradox by a simple formula. With tests on three-way interactions, there is only one that determines whether the partial interactions of all variables agree or whether there is at least one variable whose partial interactions disagree. To date, there has been no test available that determines whether the partial interactions of a certain variable agree or disagree, and the presented work closes this gap. This work reveals the relation of the multiplicative and the additive measure of a three-way interaction. Another contribution addresses the question of which cells in a contingency table are fixed when the first- and second-order marginal totals are given. The proposed procedure not only detects fixed zero counts but also fixed positive counts. This impacts the determination of the degrees of freedom. Furthermore, limitations of methods that simulate contingency tables with given pairwise associations are addressed.
翻译:应急表格的分析是绝对变量实验中所使用的强有力的统计工具。本研究改进了使用应急表格所依据的理论的某些部分。具体地说,作为适用于三向表格的双向互动的一种衡量尺度,联系不平衡参数使得有可能用简单的公式量化辛普森悖论。通过对三向互动的测试,只有一种方法可以确定所有变量的部分互动是否一致,或至少有一个部分互动不相容的变量。到目前为止,还没有可用的测试来确定某一变量的部分互动是否同意或不同意,而且所提出的工作缩小了这一差距。这项工作揭示了三向互动的多重复性和相加度衡量标准之间的关系。另一个意见涉及在给出第一和第二顺序边际总计时应急表格中哪些单元格是固定的。拟议的程序不仅检测固定的零点,而且还固定肯定的正数。这影响到自由度的确定。此外,还解决了与特定对称关联模拟应急表格的方法的局限性。