Automatic speech recognition (ASR) with federated learning (FL) makes it possible to leverage data from multiple clients without compromising privacy. The quality of FL-based ASR could be measured by recognition performance, communication and computation costs. When data among different clients are not independently and identically distributed (non-IID), the performance could degrade significantly. In this work, we tackle the non-IID issue in FL-based ASR with personalized FL, which learns personalized models for each client. Concretely, we propose two types of personalized FL approaches for ASR. Firstly, we adapt the personalization layer based FL for ASR, which keeps some layers locally to learn personalization models. Secondly, to reduce the communication and computation costs, we propose decoupled federated learning (DecoupleFL). On one hand, DecoupleFL moves the computation burden to the server, thus decreasing the computation on clients. On the other hand, DecoupleFL communicates secure high-level features instead of model parameters, thus reducing communication cost when models are large. Experiments demonstrate two proposed personalized FL-based ASR approaches could reduce WER by 2.3% - 3.4% compared with FedAvg. Among them, DecoupleFL has only 11.4% communication and 75% computation cost compared with FedAvg, which is also significantly less than the personalization layer based FL.


翻译:通过联合学习(FL)自动语音识别(ASR),可以利用多个客户的数据,而不损害隐私。基于FL的ASR的质量可以通过识别性能、通信和计算成本来衡量。当不同客户的数据不是独立和相同分布(非IID)时,性能会显著下降。在这项工作中,我们用个人化的FL FL解决基于FL的非II 问题,为每个客户学习个性化FL模式。具体地说,我们为ASR提出两种个人化FL方法。首先,我们为ASR调整基于个人化FL的FL层,保持一些层次,学习个性化模型。第二,为降低通信和计算成本,我们建议分解混合的Federal学习(Decuplefl)。一方面,我们将基于FOPL的计算负担转到服务器,从而减少客户的计算。另一方面,DecoupleFL通信安全性高度,而不是模型参数,因此当模型大时会降低通信成本。实验显示两种拟议的个人化FL-FL-FL-FL-FD-FD-FL-FL-FL-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
Top
微信扫码咨询专知VIP会员