The internet advertising market is a multi-billion dollar industry, in which advertisers buy thousands of ad placements every day by repeatedly participating in auctions. In recent years, the industry has shifted to first-price auctions as the preferred paradigm for selling advertising slots. Another important and ubiquitous feature of these auctions is the presence of campaign budgets, which specify the maximum amount the advertisers are willing to pay over a specified time period. In this paper, we present a new model to study the equilibrium bidding strategies in first-price auctions for advertisers who satisfy budget constraints on average. Our model dispenses with the common, yet unrealistic assumption that advertisers' values are independent and instead assumes a contextual model in which advertisers determine their values using a common feature vector. We show the existence of a natural value-pacing-based Bayes-Nash equilibrium under very mild assumptions, and study its structural properties. Furthermore, we generalize the existence result to standard auctions and prove a revenue equivalence showing that all standard auctions yield the same revenue even in the presence of budget constraints.


翻译:互联网广告市场是一个数十亿美元的行业,广告商每天通过多次参与拍卖购买数千份广告。近年来,该行业转向了首价拍卖,作为销售广告插座的首选范例。这些拍卖的另一个重要和无处不在的特点是存在竞选预算,该预算规定了广告商在特定时期内愿意支付的最大数额。在本文中,我们提出了一个新模式,用于研究满足平均预算限制的广告商的首价拍卖的均衡投标战略。我们的模式排除了一种共同但不切实际的假设,即广告商的价值是独立的,而是以广告商使用共同特性矢量来确定其价值的背景模式。我们展示了基于自然价值的波斯-纳什平衡在非常温和的假设下的存在,并研究其结构属性。此外,我们把存在的结果概括为标准拍卖,并证明一种收入等值,表明所有标准拍卖都产生同样的收入,即使存在预算限制。

1
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
自然语言处理顶会COLING2020最佳论文出炉!
专知会员服务
24+阅读 · 2020年12月12日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
82+阅读 · 2020年9月28日
专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
19+阅读 · 2020年9月6日
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
64+阅读 · 2020年7月16日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
多高的AUC才算高?
ResysChina
7+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年4月14日
Arxiv
0+阅读 · 2021年4月12日
VIP会员
相关VIP内容
自然语言处理顶会COLING2020最佳论文出炉!
专知会员服务
24+阅读 · 2020年12月12日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
82+阅读 · 2020年9月28日
专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
19+阅读 · 2020年9月6日
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
64+阅读 · 2020年7月16日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
多高的AUC才算高?
ResysChina
7+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员