Recent progress in robotics and embodied AI is largely driven by Large Multimodal Models (LMMs). However, a key challenge remains underexplored: how can we advance LMMs to discover tasks that assist humans in open-future scenarios, where human intentions are highly concurrent and dynamic. In this work, we formalize the problem of Human-centric Open-future Task Discovery (HOTD), focusing particularly on identifying tasks that reduce human effort across plausible futures. To facilitate this study, we propose HOTD-Bench, which features over 2K real-world videos, a semi-automated annotation pipeline, and a simulation-based protocol tailored for open-set future evaluation. Additionally, we propose the Collaborative Multi-Agent Search Tree (CMAST) framework, which decomposes complex reasoning through a multi-agent system and structures the reasoning process through a scalable search tree module. In our experiments, CMAST achieves the best performance on the HOTD-Bench, significantly surpassing existing LMMs. It also integrates well with existing LMMs, consistently improving performance.


翻译:机器人与具身智能的最新进展主要受大型多模态模型(LMMs)驱动。然而,一个关键挑战尚未得到充分探索:如何推动LMMs在开放未来场景中发现能够辅助人类的任务,其中人类意图具有高度并发性与动态性。本研究形式化了以人为中心的开放未来任务发现(HOTD)问题,特别关注识别那些在合理未来情境下能够减少人类工作负担的任务。为支持该研究,我们提出了HOTD-Bench基准,其包含超过2000个真实世界视频、半自动化标注流程,以及专为开放集未来评估设计的仿真协议。此外,我们提出了协作多智能体搜索树(CMAST)框架,该框架通过多智能体系统分解复杂推理过程,并借助可扩展的搜索树模块构建推理流程。实验表明,CMAST在HOTD-Bench上取得最优性能,显著超越现有LMMs。该框架还能与现有LMMs良好集成,持续提升其性能表现。

0
下载
关闭预览

相关内容

互联网
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
22+阅读 · 2021年12月2日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员