We introduce canonical weight normalization for convolutional neural networks. Inspired by the canonical tensor decomposition, we express the weight tensors in so-called canonical networks as scaled sums of outer vector products. In particular, we train network weights in the decomposed form, where scale weights are optimized separately for each mode. Additionally, similarly to weight normalization, we include a global scaling parameter. We study the initialization of the canonical form by running the power method and by drawing randomly from Gaussian or uniform distributions. Our results indicate that we can replace the power method with cheaper initializations drawn from standard distributions. The canonical re-parametrization leads to competitive normalization performance on the MNIST, CIFAR10, and SVHN data sets. Moreover, the formulation simplifies network compression. Once training has converged, the canonical form allows convenient model-compression by truncating the parameter sums.
翻译:我们引入了进化神经网络的剖析权重正常化。 受导力强力分解的启发, 我们将所谓的剖析网络中的重量强数作为外部矢量产品的缩放量表示。 特别是, 我们以分解形式培训网络重量, 使每个模式的比重得到优化。 此外, 与重量正常化相似, 我们包含一个全球缩放参数 。 我们通过运行电法和随机从高斯或统一分布中抽取, 研究罐体形式的初始化。 我们的结果表明, 我们可以用从标准分布中提取的更廉价的初始化来取代电力法。 罐体再平衡可以导致MNIST、 CIFAR10 和 SVHN 数据集的竞争性正常化性表现。 此外, 配方会简化网络压缩。 一旦培训集中, 罐体化形式允许通过解析参数总和来方便模型压缩 。