We address the structure identification and the uniform approximation of sums of ridge functions $f(x)=\sum_{i=1}^m g_i(a_i\cdot x)$ on ${\mathbb R}^d$, representing a general form of a shallow feed-forward neural network, from a small number of query samples. Higher order differentiation, as used in our constructive approximations, of sums of ridge functions or of their compositions, as in deeper neural network, yields a natural connection between neural network weight identification and tensor product decomposition identification. In the case of the shallowest feed-forward neural network, second order differentiation and tensors of order two (i.e., matrices) suffice as we prove in this paper. We use two sampling schemes to perform approximate differentiation - active sampling, where the sampling points are universal, actively, and randomly designed, and passive sampling, where sampling points were preselected at random from a distribution with known density. Based on multiple gathered approximated first and second order differentials, our general approximation strategy is developed as a sequence of algorithms to perform individual sub-tasks. We first perform an active subspace search by approximating the span of the weight vectors $a_1,\dots,a_m$. Then we use a straightforward substitution, which reduces the dimensionality of the problem from $d$ to $m$. The core of the construction is then the stable and efficient approximation of weights expressed in terms of rank-$1$ matrices $a_i \otimes a_i$, realized by formulating their individual identification as a suitable nonlinear program. We prove the successful identification by this program of weight vectors being close to orthonormal and we also show how we can costructively reduce to this case by a whitening procedure, without loss of any generality.


翻译:我们从少量查询样本中处理脊柱功能的结构识别和金额的统一近似值$f(x) ⁇ sum ⁇ i=1 g_i(a_i_i\cdotxx)$$美元(mathbb R ⁇ d$),代表浅质饲料向神经网络的一般形式,来自少量查询样本。在我们建设性的近似中使用的关于脊柱功能或其构成的金额的更高顺序区分,如在更深的神经网络中,在神经网络重量识别和高压产品分解分解识别之间产生一种天然联系。在最浅的饲料-向上神经网络中,第二个顺序差异和顺序二(即矩阵)是我们现在所证明的。我们使用两种取样方法来进行大致的差别划分,即抽样点是通用、积极和随机设计,抽样点是从已知密度的分布中随机选择的。根据多重收集的第一和第二顺序差异,我们的一般近似战略是从一个算算法的重量序列,而我们从一个直径的直径直径的平方程式中进行一个快速搜索,然后用一个直径直径的顺序,我们用一个直径方程式进行一个直径直方程式。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
五个精彩实用的自然语言处理资源
机器学习研究会
6+阅读 · 2018年2月23日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月29日
Arxiv
5+阅读 · 2020年3月16日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
五个精彩实用的自然语言处理资源
机器学习研究会
6+阅读 · 2018年2月23日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员