The channel output entropy of a transmitted word is the entropy of the possible channel outputs and similarly the input entropy of a received word is the entropy of all possible transmitted words. The goal of this work is to study these entropy values for the $k$-deletion, $k$-insertion channel, where exactly $k$ symbols are deleted, inserted in the transmitted word, respectively. If all possible words are transmitted with the same probability then studying the input and output entropies is equivalent. For both the 1-insertion and 1-deletion channels, it is proved that among all words with a fixed number of runs, the input entropy is minimized for words with a skewed distribution of their run lengths and it is maximized for words with a balanced distribution of their run lengths. Among our results, we establish a conjecture by Atashpendar et al. which claims that for the binary 1-deletion channel, the input entropy is maximized for the alternating words.
翻译:传送单词的导体输出导体是可能的导体输出的导体, 同样, 收到的单词输入的导体是所有可能的传输单词的导体。 这项工作的目标是研究用于 $k$ eletion, $k$- dispion 频道的这些导体值, 其中精确删除了 $k$ 符号, 插入到传输单词中。 如果所有可能的单词都以相同概率传输, 然后研究输入和输出的导体是等同的。 对于 1 插入 和 1 eletion 频道来说, 已经证明在所有有固定运行数的单词中, 输入导体最小化为运行长度分布偏斜的单词, 并且以运行长度分布平衡的单词最大化 。 在我们的结果中, 我们用 Atashpendar etal et al 来建立一个直方的直方的直方, 其中称对于二进导体 1 移导体频道, 输入的导体是用于交替单词的最大化 。