LiDAR semantic segmentation can provide vehicles with a rich understanding of scene, which is essential to the perception system in robotics and autonomous driving. In this paper, we propose LENet, a lightweight and efficient projection-based LiDAR semantic segmentation network, which has an encoder-decoder architecture. The encoder consists of a set of MSCA module, which is a simple convolutional attention module to capture multi-scale feature maps. The decoder consists of IAC module, which uses bilinear interpolation to upsample the multi-resolution feature maps and a single convolution layer to integrate the previous and current dimensional features. IAC is very lightweight and dramatically reduces the complexity and storage cost. Moreover, we introduce multiple auxiliary segmentation heads to further refine the network accuracy. We have conducted detailed quantitative experiments, which shows how each component contributes to the final performance. We evaluate our approach on well known public benchmarks (SemanticKITTI), which demonstrates our proposed LENet is more lightweight and effective than state-of-the-art semantic segmentation approaches. Our full implementation will be available at \url{https://github.com/fengluodb/LENet}.


翻译:LiDAR 语义分解可以使飞行器对场景有丰富的了解,这对机器人和自主驾驶的感知系统至关重要。在本文中,我们提议使用LENet,即轻量和高效投射的LIDAR 语义分解网络,其结构为编码器-代代码器结构。编码器由一套MSCA模块组成,这是一个简单的共进关注模块,用于捕捉多尺度地貌地图。解码器由IAC模块组成,该模块使用双线间插来采集多分辨率地貌图和单一相联层,以整合先前和当前维系特征。IAC非常轻量,大大降低了复杂性和存储成本。此外,我们引入了多个辅助分解头,以进一步完善网络的准确性。我们进行了详细的定量实验,展示了每个组成部分如何为最后性能做出贡献。我们评估了我们对众所周知的公共基准(SemanticKITTI)采用的方法,该基准显示我们提议的LENet比Sat-art semantictal selubation {al\\\\ combisal 完全实施的方法更轻、有效和有效。我们将可在网络上找到/artual/arrqrbrbbr/l/l/l/l/l/le/lemental/leb)。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
109+阅读 · 2020年3月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员