Mean field approximation is a powerful technique to study the performance of large stochastic systems represented as $n$ interacting objects. Applications include load balancing models, epidemic spreading, cache replacement policies, or large-scale data centers. Mean field approximation is asymptotically exact for systems composed of $n$ homogeneous objects under mild conditions. In this paper, we study what happens when objects are heterogeneous. This can represent servers with different speeds or contents with different popularities. We define an interaction model that allows obtaining asymptotic convergence results for stochastic systems with heterogeneous object behavior, and show that the error of the mean field approximation is of order $O(1/n)$. More importantly, we show how to adapt the refined mean field approximation, developed by Gast et al. 2019, and show that the error of this approximation is reduced to $O(1/n^2)$. To illustrate the applicability of our result, we present two examples. The first addresses a list-based cache replacement model RANDOM($m$), which is an extension of the RANDOM policy. The second is a heterogeneous supermarket model. These examples show that the proposed approximations are computationally tractable and very accurate. They also show that for moderate system sizes ($n\approx30$) the refined mean field approximation tends to be more accurate than simulations for any reasonable simulation time.


翻译:外观近似是研究以美元为互动对象的大型随机系统性能的强大技术。 应用包括负负平衡模型、 流行传播、 缓存替换政策或大型数据中心。 平均字段近近近对由美元均匀对象组成的系统在温和条件下的相似性几乎是无症状的。 在本文中, 我们研究物体变异时会发生什么情况。 这可以代表不同速度或内容的服务器和不同大众。 我们定义了一个互动模型, 允许以异质对象行为获得慢速率系统无症状趋同结果, 并显示平均字段近近似误差为$O( 1/ n) 。 更重要的是, 我们展示了如何调整由 Gast 等人 2019 开发的精细平均值近似的实地近近似性。 并显示这种近似差差差差为$( 1/ n% 2) 。 为了说明我们结果的适用性, 我们举了两个例子。 我们定义了一个互动模型, 用于基于列表的缓冲替换模型 RANDOM ($), 这是 RANDOM 政策的延伸。 政策第二一个中度的混和中度超级超级超级超级超市模型。 这些示例显示精确度的精确度的精确度系统, 。 也显示更精确度是精确度的精确度的精确度。

0
下载
关闭预览

相关内容

《过参数化机器学习理论》综述论文
专知会员服务
45+阅读 · 2021年9月19日
专知会员服务
14+阅读 · 2021年5月21日
【KDD 2020】基于互信息最大化的多知识图谱语义融合
专知会员服务
41+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
5+阅读 · 2018年6月12日
Arxiv
5+阅读 · 2017年12月14日
Arxiv
3+阅读 · 2017年12月14日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员