This paper studies the task of best counter-argument retrieval given an input argument. Following the definition that the best counter-argument addresses the same aspects as the input argument while having the opposite stance, we aim to develop an efficient and effective model for scoring counter-arguments based on similarity and dissimilarity metrics. We first conduct an experimental study on the effectiveness of available scoring methods, including traditional Learning-To-Rank (LTR) and recent neural scoring models. We then propose Bipolar-encoder, a novel BERT-based model to learn an optimal representation for simultaneous similarity and dissimilarity. Experimental results show that our proposed method can achieve the accuracy@1 of 49.04\%, which significantly outperforms other baselines by a large margin. When combined with an appropriate caching technique, Bipolar-encoder is comparably efficient at prediction time.
翻译:本文研究了给定一个输入论点时的最佳反驳检索任务。根据最佳反驳定义,最佳反驳需要与输入论点关注相同的方面,但具有相反的立场。我们旨在开发一种基于相似性和不相似性度量的高效和有效的模型来评分反驳。我们首先进行了一个关于可用评分方法的实验研究,包括传统的学习排序和最近的神经评分模型。然后,我们提出了Bipolar-encoder,这是一种基于BERT的新型模型,用于学习同时相似性和不相似性的优化表示。实验结果表明,我们提出的方法可以获得49.04\%的精确度@1,其性能显著优于其他基线。当与适当的缓存技术相结合时,Bipolar-encoder的预测时间是可比较的高效率。