In this paper, we present a transformer architecture for predicting student performance on standardized tests. Specifically, we leverage students historical data, including their past test scores, study habits, and other relevant information, to create a personalized model for each student. We then use these models to predict their future performance on a given test. Applying this model to the RIIID dataset, we demonstrate that using multiple granularities for temporal features as the decoder input significantly improve model performance. Our results also show the effectiveness of our approach, with substantial improvements over the LightGBM method. Our work contributes to the growing field of AI in education, providing a scalable and accurate tool for predicting student outcomes.
翻译:在本文中,我们提出了一种Transformer架构,用于预测标准化测试中的学生表现。具体而言,我们利用学生的历史数据,包括他们过去的测试得分、学习习惯和其他相关信息,为每个学生创建一个个性化模型。然后,我们使用这些模型来预测学生在给定考试中的未来表现。将此模型应用于RIIID数据集,我们证明使用多个粒度的时间特征作为解码器输入,可以显着提高模型性能。我们的结果还表明,我们的方法非常有效,在LightGBM方法上有着显著的改进。我们的工作为教育领域不断发展的AI领域做出了贡献,提供了一种可扩展且准确的工具,用于预测学生的结果。