Federated edge learning (FEEL) is a widely adopted framework for training an artificial intelligence (AI) model distributively at edge devices to leverage their data while preserving their data privacy. The execution of a power-hungry learning task at energy-constrained devices is a key challenge confronting the implementation of FEEL. To tackle the challenge, we propose the solution of powering devices using wireless power transfer (WPT). To derive guidelines on deploying the resultant wirelessly powered FEEL (WP-FEEL) system, this work aims at the derivation of the tradeoff between the model convergence and the settings of power sources in two scenarios: 1) the transmission power and density of power-beacons (dedicated charging stations) if they are deployed, or otherwise 2) the transmission power of a server (access-point). The development of the proposed analytical framework relates the accuracy of distributed stochastic gradient estimation to the WPT settings, the randomness in both communication and WPT links, and devices' computation capacities. Furthermore, the local-computation at devices (i.e., mini-batch size and processor clock frequency) is optimized to efficiently use the harvested energy for gradient estimation. The resultant learning-WPT tradeoffs reveal the simple scaling laws of the model-convergence rate with respect to the transferred energy as well as the devices' computational energy efficiencies. The results provide useful guidelines on WPT provisioning to provide a guaranteer on learning performance. They are corroborated by experimental results using a real dataset.
翻译:联邦边缘学习(FEEL)是一个广泛采用的框架,用于培训人工智能模型(AI),在边缘装置上分配模型,以在保留数据隐私的同时利用数据。在能源限制装置上执行缺电学习任务是落实感觉面临的一个关键挑战。为了应对这一挑战,我们提议使用无线电力传输(WPT)来解决供电装置问题。为了获得部署由此产生的无线动力感觉(WP-FEEL)系统的指导方针,这项工作的目的是在以下两种情景中使电源的模型趋同和设置相互取舍:1)如果部署了专用充电站(专用充电站)的传输力和密度(专用充电站),或者2)服务器的传输力(接入点)。拟议分析框架的开发将分布的随机偏差梯度估计与WPT环境、通信和WPT连接的随机性连接以及设备的计算能力联系起来。此外,在两种情景中,电源源源源的组合组合(即微型接货大小和处理时钟(专用充电站)的传输力和密度(专用充电充电充电充电充电充电充电充电充电充电充电充电充电充电充电充电充电充电充电充电充电充电充电充电充电)的传输频率的传输速度,是优化的计算法的升级法的升级法的升级法的升级法的升级法的升级法,以不断压,以获取率,以不断测算算算算算法,以获取能源成本。