In this paper, a general stochastic optimization procedure is studied, unifying several variants of the stochastic gradient descent such as, among others, the stochastic heavy ball method, the Stochastic Nesterov Accelerated Gradient algorithm (S-NAG), and the widely used Adam algorithm. The algorithm is seen as a noisy Euler discretization of a non-autonomous ordinary differential equation, recently introduced by Belotto da Silva and Gazeau, which is analyzed in depth. Assuming that the objective function is non-convex and differentiable, the stability and the almost sure convergence of the iterates to the set of critical points are established. A noteworthy special case is the convergence proof of S-NAG in a non-convex setting. Under some assumptions, the convergence rate is provided under the form of a Central Limit Theorem. Finally, the non-convergence of the algorithm to undesired critical points, such as local maxima or saddle points, is established. Here, the main ingredient is a new avoidance of traps result for non-autonomous settings, which is of independent interest.


翻译:本文研究了一般随机优化程序,统一了随机梯度下降的若干变种,例如重球法、Stochacistic Nesterov加速梯度算法(S-NAG)和广泛使用的亚当算法。这一算法被视为非自主普通差分方的杂音分解,最近由Belotto da Silva和Gazeau采用,对此进行了深入分析。假设客观功能是不可凝固和可变的,迭代国与一组临界点的稳定性和几乎肯定的汇合已经确立。一个值得注意的特殊案例是,S-NAG在非convex环境下的趋同证据。根据一些假设,这种趋同率是以中央限制理论的形式提供的。最后,算法与不受欢迎的临界点(如本地峰值或马鞍点)不相容。在这里,主要成份是避免非自治环境的陷阱结果,这是独立的兴趣。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【Google】梯度下降,48页ppt
专知会员服务
80+阅读 · 2020年12月5日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
The Heavy-Tail Phenomenon in SGD
Arxiv
0+阅读 · 2021年6月8日
Arxiv
0+阅读 · 2021年6月7日
Arxiv
0+阅读 · 2021年6月5日
VIP会员
相关VIP内容
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员