While it is encouraging to witness the recent development in privacy-preserving Machine Learning as a Service (MLaaS), there still exists a significant performance gap for its deployment in real-world applications. We observe the state-of-the-art frameworks follow a compute-and-share principle for every function output where the summing in linear functions, which is the last of two steps for function output, involves all rotations (which is the most expensive HE operation), and the multiplexing in nonlinear functions, which is also the last of two steps for function output, introduces noticeable communication rounds. Therefore, we challenge the conventional compute-and-share logic and introduce the first joint linear and nonlinear computation across functions that features by 1) the PHE triplet for computing the nonlinear function, with which the multiplexing is eliminated; 2) the matrix encoding to calculate the linear function, with which all rotations for summing is removed; and 3) the network adaptation to reassemble the model structure, with which the joint computation module is utilized as much as possible. The boosted efficiency is verified by the numerical complexity, and the experiments demonstrate up to 13x speedup for various functions used in the state-of-the-art models and up to 5x speedup over mainstream neural networks.


翻译:令人欣慰的是,人们目睹了隐私保存机学习服务(MLaaS)的最近发展,但是,在实际应用中,仍然存在着显著的绩效差距。我们观察到,最先进的框架遵循每个函数输出的计算和分享原则,即线性函数的缩放是函数输出的两个步骤中的最后一个,涉及所有旋转(这是最昂贵的HE操作),以及非线性函数的多重x化,这也是功能输出的两个步骤的最后两个步骤,引入了显著的通信回合。因此,我们质疑常规的计算和分享逻辑,并引入了第一个对功能的在线和非线性联合计算,其特点为:1) PHE 三进制用于计算非线性函数的计算,从而消除多重xx;2)用于计算线性函数的矩阵编码,从而删除所有调音的所有旋转;3)网络调整,以重新评估模型结构,并尽可能使用联合计算模块。因此,通过数字复杂性验证了提高的效率,并引入了第一个联合线性和非线性计算方法,1)用于计算非线性函数,从而消除多重x;2)用来计算的所有线性功能;3 用于各种速度的模型。在5x上使用的实验中,用于各种速度。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月20日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员