For Head and Neck Cancers (HNC) patient management, automatic gross tumor volume (GTV) segmentation and accurate pre-treatment cancer recurrence prediction are of great importance to assist physicians in designing personalized management plans, which have the potential to improve the treatment outcome and quality of life for HNC patients. In this paper, we developed an automated primary tumor (GTVp) and lymph nodes (GTVn) segmentation method based on combined pre-treatment positron emission tomography/computed tomography (PET/CT) scans of HNC patients. We extracted radiomics features from the segmented tumor volume and constructed a multi-modality tumor recurrence-free survival (RFS) prediction model, which fused the prediction results from separate CT radiomics, PET radiomics, and clinical models. We performed 5-fold cross-validation to train and evaluate our methods on the MICCAI 2022 HEad and neCK TumOR segmentation and outcome prediction challenge (HECKTOR) dataset. The ensemble prediction results on the testing cohort achieved Dice scores of 0.77 and 0.73 for GTVp and GTVn segmentation, respectively, and a C-index value of 0.67 for RFS prediction. The code is publicly available (https://github.com/wangkaiwan/HECKTOR-2022-AIRT). Our team's name is AIRT.
翻译:对于头癌和颈癌(HNC)的病人管理,自动毛肿瘤量(GTV)分量(GTV)和准确的预治疗癌症复发预测对于协助医生设计个性化管理计划非常重要,这些计划有可能改善治疗结果,提高HNC病人的生活质量;在本论文中,我们开发了一种自动化初级肿瘤(GTVp)和淋巴结(GTVn)分治方法,其基础是:对HNRT病人进行预处理前排放2022年的烟雾/截肢成像(PET/CT)扫描;我们从分解的肿瘤体积中提取了放射特征,并构建了一个多式肿瘤复发性(RFS)的预测模型,该模型结合了单独的CT放射、PETmicics和临床模型的预测结果;我们进行了5倍的交叉评估,以培训和评价我们在MICCAI 2022年的地震/NCK TumOR分解和结果预测挑战(HECKTOR)的数据设置;关于测试7年和0.7年GTV值的C-TV值和0.7和0.7年GTV的C的C的数值的数值的测试结果。