We consider Schelling's bounded neighbourhood model (BNM) of unorganised segregation of two populations from the perspective of modern dynamical systems theory. We derive a Schelling dynamical system and carry out a complete quantitative analysis of the system for the case of a linear tolerance schedule in both populations. In doing so, we recover and generalise Schelling's qualitative results. For the case of unlimited population movement, we derive exact formulae for regions in parameter space where stable integrated population mixes can occur. We show how neighbourhood tipping can be adequately explained in terms of basins of attraction. For the case of limiting population movement, we derive exact criteria for the occurrence of new population mixes and identify the stable cases. We show how to apply our methodology to nonlinear tolerance schedules, illustrating our approach with numerical simulations. We associate each term in our Schelling dynamical system with a social meaning. In particular we show that the dynamics of one population in the presence of another can be summarised as follows {rate of population change} = {intrinsic popularity of neighbourhood} - {finite size of neighbourhood} - {presence of other population} By approaching the dynamics from this perspective, we have a complementary approach to that of the tolerance schedule.
翻译:我们从现代动态系统理论的角度考虑Schelling对两个人口进行无组织隔离的封闭邻里模式(BNM),我们从现代动态系统理论的角度考虑两个人口的无组织隔离模式(BNM),我们从中得出一个随机动态系统,对两个人口线性容忍时间表的情况进行完整的定量分析;在这样做时,我们恢复并概括Schelling的质量结果;在无限制的人口流动方面,我们为参数空间中能够出现稳定综合人口混合的区域得出精确公式;我们从吸引盆地的角度来说明如何充分解释邻里倾斜。在限制人口流动方面,我们为新人口混合的出现制定了精确的标准,并查明了稳定的案例。我们展示了如何将我们的方法应用于非线性容忍时间表,用数字模拟来说明我们的方法。我们把每个术语与我们的Schell动态系统联系起来,具有社会意义。我们特别表明,一个人口在另一个人口的存在中的动态可以归纳为以下人口变化率{率}=邻里居民的受欢迎程度}-我们从这一区际空间的大小接近另一个人口动态趋势。