In this paper, we propose STAMP, an end-to-end 3-party MPC protocol for efficient privacy-preserving machine learning inference assisted by a lightweight TEE (LTEE), which will be far easier to secure and deploy than today's large TEEs. STAMP provides three main advantages over the state-of-the-art; (i) STAMP achieves significant performance improvements compared to state-of-the-art MPC protocols, with only a small \LTEE that is comparable to a discrete security chip such as the Trusted Platform Module (TPM) or on-chip security subsystems in SoCs similar to the Apple enclave processor. In a semi-honest setting with WAN/GPU, STAMP is 4$\times$-63$\times$ faster than Falcon (PoPETs'21) and AriaNN (PoPETs'22) and 3.8$\times$-12$\times$ more communication efficient. We achieve even higher performance improvements in a malicious setting. (ii) STAMP guarantees security with abort against malicious adversaries under honest majority assumption. (iii) STAMP is not limited by the size of secure memory in a TEE and can support high-capacity modern neural networks like ResNet18 and Transformer.
翻译:在本文中,我们提议STAMP,这是由轻量级TEE(LTEE)协助的高效保护隐私机器学习的终端到终端三方MP协议,其高效的保密机器学习推介将比当今大型TEE(LTEE)更容易获得和部署。STAMP比最先进的技术提供了三大优势;(一)STAMP比最先进的MPC协议取得了显著的绩效改进,比最先进的MPC协议(POPETs'21)和AriANN(POPETETs'22)和3.8美元到12美元之间的通信效率更高。我们在类似苹果飞地处理器的SoCSO型平台(TPM)或机上安全子子系统等离散的安全芯芯片上,其安全和部署要比今天的大型TEMP/GPU进程要容易得多。在半荣誉环境中,STAMPPM比Faln(PETs'21)和AriamNNNN(PPPETs'22)快4倍,通讯效率更高。我们在恶意平台(TP 18 STAMP保证像STMP-Nealstalstalstalstalstuplistalstalstall 3) asion imabilding (不象力的有限的安全安全性能支持像STAM3) 高的现代化网络可以保证像STMP Asmaticalstalstalstalstalticalstalticalticaltimestrismalticaltical lati) 。