5G and beyond is expected to enable various emerging use cases with diverse performance requirements from vertical industries. To serve these use cases cost-effectively, network slicing plays a key role in dynamically creating virtual end-to-end networks according to specific resource demands. A network slice may have hundreds of configurable parameters over multiple technical domains that define the performance of the network slice, which makes it impossible to use traditional model-based solutions to orchestrate resources for network slices. In this article, we discuss how to design and deploy deep reinforcement learning (DRL), a model-free approach, to address the network slicing problem. First, we analyze the network slicing problem and present a standard-compliant system architecture that enables DRL-based solutions in 5G and beyond networks. Second, we provide an in-depth analysis of the challenges in designing and deploying DRL in network slicing systems. Third, we explore multiple promising techniques, i.e., safety and distributed DRL, and imitation learning, for automating end-to-end network slicing.
翻译:预计5G及以后将促成各种新出现的使用案例,这些案例具有来自纵向工业的不同性能要求。为了以具有成本效益的方式为这些案例提供服务,网络切片在根据具体资源需求动态地创建虚拟端对端网络方面发挥着关键作用。一个网络切片可能拥有数以百计的可配置参数,涉及多个技术领域,界定网络切片的性能,从而无法使用传统的基于模型的解决方案来为网络切片调用资源。在本篇文章中,我们讨论如何设计和部署深度强化学习(DRL),这是一种无模型的办法,以解决网络切片问题。首先,我们分析了网络切片问题,并提出了一个符合标准的系统架构,使基于DRL的解决方案在5G网络内外得以实现。第二,我们深入分析了在网络切片系统中设计和部署DRL的挑战。第三,我们探索多种有前途的技术,即安全性和分布式的DRL,以及模拟学习,用于终端对端网络切片的自动化。