Ensemble models refer to methods that combine a typically large number of classifiers into a compound prediction. The output of an ensemble method is the result of fitting a base-learning algorithm to a given data set, and obtaining diverse answers by reweighting the observations or by resampling them using a given probabilistic selection. A key challenge of using ensembles in large-scale multidimensional data lies in the complexity and the computational burden associated with them. The models created by ensembles are often difficult, if not impossible, to interpret and their implementation requires more computational power than single classifiers. Recent research effort in the field has concentrated in reducing ensemble size, while maintaining their predictive accuracy. We propose a method to prune an ensemble solution by optimizing its margin distribution, while increasing its diversity. The proposed algorithm results in an ensemble that uses only a fraction of the original classifiers, with improved or similar generalization performance. We analyze and test our method on both synthetic and real data sets. The simulations show that the proposed method compares favorably to the original ensemble solutions and to other existing ensemble pruning methodologies.


翻译:组合模型是指将一般数量众多的分类器结合到复合预测中的方法。混合方法的输出是将基础学习算法与某一数据集相适应的结果,并且通过对观测进行重新加权或利用特定概率选择对观测进行再抽样来获得不同答案的结果。在大规模多维数据中使用集合器的关键挑战在于其复杂性和相关的计算负担。组合产生的模型往往难以(如果不是不可能的话)解释和实施,因此其执行需要比单一分类器更大的计算能力。最近实地的研究工作集中于减少组合体大小,同时保持其预测性准确性。我们提出了一个方法,通过优化其边距分布,同时增加其多样性,将一个共通性解决方案配置成一个共性解决方案。拟议算法的结果只是使用原始分类器的一小部分,并且改进或类似一般化性性性。我们分析并测试我们在合成和真实数据集上的方法。模拟表明,拟议的方法比原始组合式解决办法和其他现有组合式方法要好得多。

0
下载
关闭预览

相关内容

专知会员服务
62+阅读 · 2020年3月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
7+阅读 · 2018年12月26日
Deep Randomized Ensembles for Metric Learning
Arxiv
5+阅读 · 2018年9月4日
Arxiv
17+阅读 · 2018年4月2日
VIP会员
相关VIP内容
专知会员服务
62+阅读 · 2020年3月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员