Covariate distribution shift occurs when certain structural features present in the test set are absent from the training set. It is a common type of out-of-distribution (OOD) problem, frequently encountered in real-world graph data with complex structures. Existing research has revealed that most out-of-the-box graph neural networks (GNNs) fail to account for covariate shifts. Furthermore, we observe that existing methods aimed at addressing covariate shifts often fail to fully leverage the rich information contained within the latent space. Motivated by the potential of the latent space, we introduce a new method called MPAIACL for More Powerful Adversarial Invariant Augmentation using Contrastive Learning. MPAIACL leverages contrastive learning to unlock the full potential of vector representations by harnessing their intrinsic information. Through extensive experiments, MPAIACL demonstrates its robust generalization and effectiveness, as it performs well compared with other baselines across various public OOD datasets. The code is publicly available at https://github.com/flzeng1/MPAIACL.


翻译:协变量分布偏移是指测试集中存在的某些结构特征在训练集中缺失的现象。这是分布外问题的一种常见类型,在具有复杂结构的真实世界图数据中频繁出现。现有研究表明,大多数现成的图神经网络未能有效处理协变量偏移。此外,我们观察到现有针对协变量偏移的方法往往无法充分利用潜在空间中的丰富信息。基于潜在空间的潜力,我们提出了一种名为MPAIACL的新方法,即通过对比学习实现更强大的对抗性不变增强。MPAIACL利用对比学习挖掘向量表示的内在信息,从而充分释放其潜力。通过大量实验,MPAIACL在多个公开的OOD数据集上均表现出优于其他基线方法的性能,证明了其强大的泛化能力和有效性。代码已公开于https://github.com/flzeng1/MPAIACL。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员