Subgraph matching is a NP-complete problem that extracts isomorphic embeddings of a query graph $q$ in a data graph $G$. In this paper, we present a framework with three components: Preprocessing, Reordering and Enumeration. While pruning is the core technique for almost all existing subgraph matching solvers, it mainly eliminates unnecessary enumeration over data graph without alternation of query graph. By formulating a problem: Assignment under Conditional Candidate Set(ACCS), which is proven to be equivalent to Subgraph matching problem, we propose Dynamic Graph Editing(DGE) that is for the first time designed to tailor the query graph to achieve pruning effect and performance acceleration. As a result, we proposed DGEE(Dynamic Graph Editing Enumeration), a novel enumeration algorithm combines Dynamic Graph Editing and Failing Set optimization. Our second contribution is proposing fGQL , an optimized version of GQL algorithm, that is utilized during the Preprocessing phase. Extensive experimental results show that the DGEE-based framework can outperform state-of-the-art subgraph matching algorithms.
翻译:Subgraph 匹配是一个完全的 NP 问题, 它在数据图形中提取了一个查询图形的单方嵌入 $q $G$ 。 在本文中, 我们提出了一个包含三个组成部分的框架 : 预处理、 重新排序和计算。 虽然修剪是几乎所有现有子子绘图匹配解答器的核心技术, 但主要消除了数据图上不必要的查点, 而不换出查询图 。 通过提出一个问题: 有条件候选集( ACCS) 下的任务( 有条件候选集( ACCS), 事实证明它等同于子图匹配问题 。 我们提出动态图表编辑( DGE) 是首次设计用来调整查询图以达到运行效果和性能加速的。 因此, 我们提出了 DGEE( 动图编辑计算), 新的计算算法将动态图形编辑和不匹配元件优化合并。 我们的第二个贡献是提出 FGQQQL, 优化的GQL 算法版本, 用于预处理阶段。 广泛的实验结果表明, 基于 DGE 的框架可以超越状态子绘图匹配的匹配算法。