This paper studies the infinite-dimensional Bayesian inference method with Hadamard fractional total variation-Gaussian (HFTG) prior for solving inverse problems. First, Hadamard fractional Sobolev space is established and proved to be a separable Banach space under some mild conditions. Afterwards, the HFTG prior is constructed in this separable fractional space, and the proposed novel hybrid prior not only captures the texture details of the region and avoids step effects, but also provides a complete theoretical analysis in the infinite dimensional Bayesian inversion. Based on the HFTG prior, the well-posedness and finite-dimensional approximation of the posterior measure of the Bayesian inverse problem are given, and samples are extracted from the posterior distribution using the standard pCN algorithm. Finally, numerical results under different models indicate that the Bayesian inference method with HFTG prior is effective and accurate.
翻译:本文研究了在解决反向问题之前Hadamard 分数总变异-Gausian(GHTG)的无限维贝斯推论法。 首先,Hadamard 分数Sobolev空间已经建立,并被证明是在一些温和条件下可分离的Banach空间。 之后,HFTG先前建于这个可分离的分数空间,而拟议的新型混合不仅捕捉了该区域的纹理细节并避免了步骤效应,而且还在无限维维贝斯回流中提供了完整的理论分析。 根据HFTG之前的HFTG,提供了巴耶斯反向问题后方测量的精度和有限维近距离,并使用标准的pCN算法从远端分布中提取了样本。 最后,不同模型下的数字结果显示,与HFTG以前使用的Bayesian推论法是有效和准确的。