In this article, we develop a new method to approximate numerically the fractional Laplacian of functions defined on $\mathbb R$, as well as some more general singular integrals. After mapping $\mathbb R$ into a finite interval, we discretize the integral operator using a modified midpoint rule. The result of this procedure can be cast as a discrete convolution, which can be evaluated efficiently using the Fast-Fourier Transform (FFT). The method provides an efficient, second order accurate, approximation to the fractional Laplacian, without the need to truncate the domain. We first prove that the method gives a second-order approximation for the fractional Laplacian and other related singular integrals; then, we detail the implementation of the method using the fast convolution, and give numerical examples that support its efficacy and efficiency; finally, as an example of its applicability to an evolution problem, we employ the method for the discretization of the nonlocal part of the one-dimensional cubic fractional Schr\"odinger equation in the focusing case.
翻译:在此篇文章中, 我们开发了一种新的方法, 用数字来估计 $\ mathbb R$ 定义的函数的分数拉普拉西亚值, 以及一些更一般的单元元件。 在将 $\ mathbb R$ 绘制成一个有限的间隔后, 我们使用修改的中点规则将整体操作员分解。 这个程序的结果可以作为一个离散的演化过程, 可以用快速的四面形变换( FFT) 来有效评估。 这个方法提供了一种高效的, 第二顺序的准确性, 接近于分数式拉普拉西亚值, 不需要对域进行切换。 我们首先证明该方法为分数的拉普拉西亚值和其他相关的单元元元件组合提供了第二阶近似值; 然后, 我们详细介绍使用快速变速法的方法的实施情况, 并提供支持其效能和效率的数字实例; 最后, 作为它适用于进化问题的一个例子, 我们使用方法在焦点案中将单维 立方形 分数 Schr\\\\ od 等方程式的非本地化方法 。