This paper presents $\mu\text{KG}$, an open-source Python library for representation learning over knowledge graphs. $\mu\text{KG}$ supports joint representation learning over multi-source knowledge graphs (and also a single knowledge graph), multiple deep learning libraries (PyTorch and TensorFlow2), multiple embedding tasks (link prediction, entity alignment, entity typing, and multi-source link prediction), and multiple parallel computing modes (multi-process and multi-GPU computing). It currently implements 26 popular knowledge graph embedding models and supports 16 benchmark datasets. $\mu\text{KG}$ provides advanced implementations of embedding techniques with simplified pipelines of different tasks. It also comes with high-quality documentation for ease of use. $\mu\text{KG}$ is more comprehensive than existing knowledge graph embedding libraries. It is useful for a thorough comparison and analysis of various embedding models and tasks. We show that the jointly learned embeddings can greatly help knowledge-powered downstream tasks, such as multi-hop knowledge graph question answering. We will stay abreast of the latest developments in the related fields and incorporate them into $\mu\text{KG}$.
翻译:本文展示了 $\ mu\ text{ KG} $,这是一个开放源代码 Python 库, 用于通过知识图形进行代表学习。 $\ mu\ text{ KG} 美元支持通过多源知识图表( 以及单一知识图表) 进行联合代表学习。 多深层学习图书馆( PyTorrch 和 Tensor Flow 2 ), 多重嵌入任务( 链接预测、 实体对齐、 实体打字和多源链接预测), 多平行计算模式( 多进程和多源链接计算) 。 它目前实施26个流行的知识图形嵌入模型, 支持16个基准数据集 。 $\ mu\ text{ KG} 提供以简化的不同任务管道嵌入技术的高级应用。 也包含高质量文件, 便于使用。 $\ \ text{ K} $, 比现有的知识图形嵌入库库更全面比较和分析各种嵌入模式和任务。 我们表明, 共同学习嵌入可以极大地帮助知识驱动下游任务, 如多位知识问题解答 $\\\ 。 我们将在相关领域的开发领域 $K\\\\\\\ text 。