Time series underwent the transition from statistics to deep learning, as did many other machine learning fields. Although it appears that the accuracy has been increasing as the model is updated in a number of publicly available datasets, it typically only increases the scale by several times in exchange for a slight difference in accuracy. Through this experiment, we point out a different line of thinking, time series, especially long-term forecasting, may differ from other fields. It is not necessary to use extensive and complex models to grasp all aspects of time series, but to use pure models to grasp the core rules of time series changes. With this simple but effective idea, we created PureTS, a network with three pure linear layers that achieved state-of-the-art in 80% of the long sequence prediction tasks while being nearly the lightest model and having the fastest running speed. On this basis, we discuss the potential of pure linear layers in both phenomena and essence. The ability to understand the core law contributes to the high precision of long-distance prediction, and reasonable fluctuation prevents it from distorting the curve in multi-step prediction like mainstream deep learning models, which is summarized as a pure linear neural network that avoids over-fluctuating. Finally, we suggest the fundamental design standards for lightweight long-step time series tasks: input and output should try to have the same dimension, and the structure avoids fragmentation and complex operations.


翻译:时间序列和许多其他机器学习领域一样,都经历了从统计向深层次学习的转变。尽管随着模型在一些公开的数据集中更新,其准确性似乎在不断提高,但通常只是将规模增加若干次,以换取稍微的准确性差异。我们通过这一实验指出不同的思维线,时间序列,特别是长期预测,可能不同于其他领域。没有必要使用广泛而复杂的模型来掌握时间序列的所有方面,而是使用纯模型来掌握时间序列变化的核心规则。由于这个简单而有效的想法,我们创建了PureTS,这个由三种纯线性线性层组成的网络,在80 %的长序列预测任务中达到了最先进的水平,同时几乎是最轻的模型,运行速度也最快。在此基础上,我们讨论纯线性层在现象和本质上的潜力。理解核心法律的能力有助于长距离预测的高度精确性,而合理的波动则阻止它扭曲多步预测的曲线,如主流深层次学习模型,它被总结为一个简单的线性线性线性网络,在80 %的预测中达到了最先进的水平,而我们最终可以建议一个简单的线性线性神经结构,从而避免过量的输出结构。我们最后应该提出一个简单的设计,从而避免过量和进。

0
下载
关闭预览

相关内容

专知会员服务
38+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Towards Data-Free Domain Generalization
Arxiv
0+阅读 · 2022年10月3日
Arxiv
64+阅读 · 2021年6月18日
A Comprehensive Survey on Transfer Learning
Arxiv
117+阅读 · 2019年11月7日
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关VIP内容
专知会员服务
38+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员