Many applications of Bayesian data analysis involve sensitive information, motivating methods which ensure that privacy is protected. We introduce a general privacy-preserving framework for Variational Bayes (VB), a widely used optimization-based Bayesian inference method. Our framework respects differential privacy, the gold-standard privacy criterion, and encompasses a large class of probabilistic models, called the Conjugate Exponential (CE) family. We observe that we can straightforwardly privatise VB's approximate posterior distributions for models in the CE family, by perturbing the expected sufficient statistics of the complete-data likelihood. For a broadly-used class of non-CE models, those with binomial likelihoods, we show how to bring such models into the CE family, such that inferences in the modified model resemble the private variational Bayes algorithm as closely as possible, using the Polya-Gamma data augmentation scheme. The iterative nature of variational Bayes presents a further challenge since iterations increase the amount of noise needed. We overcome this by combining: (1) an improved composition method for differential privacy, called the moments accountant, which provides a tight bound on the privacy cost of multiple VB iterations and thus significantly decreases the amount of additive noise; and (2) the privacy amplification effect of subsampling mini-batches from large-scale data in stochastic learning. We empirically demonstrate the effectiveness of our method in CE and non-CE models including latent Dirichlet allocation, Bayesian logistic regression, and sigmoid belief networks, evaluated on real-world datasets.


翻译:Bayesian数据分析的许多应用都涉及敏感信息,激励方法确保隐私得到保护。我们为变异贝雅(VB)引入了通用的隐私保护框架(VB),这是一个广泛使用的基于优化的贝雅推断法。我们的框架尊重不同的隐私,金标准隐私标准标准,并包含大量的概率模型,称为Conjugate Perential(CE)家族。我们观察到,我们可以直接将VB对CE家族中模型的近似后方分布进行精炼,通过渗透完整数据可能性的预期充足统计数据。对于广泛使用的非CE型模型(VB),我们展示了如何将这种模型引入CEE家族,例如,不同的隐私,因此,修改模型中的推论尽可能接近私人变异性贝亚算算法,使用Polica-Gamma数据增强计划。变异性贝亚的反复性性质增加了所需的噪音数量。我们克服了这一困难的方法,将:(1) 改进的CB级(VIreiality) 网络的准确性结构方法,从而显著地展示了V级的精确度数据分析方法。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
A Probe into Understanding GAN and VAE models
Arxiv
9+阅读 · 2018年12月13日
Arxiv
4+阅读 · 2018年1月15日
Arxiv
3+阅读 · 2018年1月10日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员