We investigate fast and communication-efficient algorithms for the classic problem of minimizing a sum of strongly convex and smooth functions that are distributed among $n$ different nodes, which can communicate using a limited number of bits. Most previous communication-efficient approaches for this problem are limited to first-order optimization, and therefore have \emph{linear} dependence on the condition number in their communication complexity. We show that this dependence is not inherent: communication-efficient methods can in fact have sublinear dependence on the condition number. For this, we design and analyze the first communication-efficient distributed variants of preconditioned gradient descent for Generalized Linear Models, and for Newton's method. Our results rely on a new technique for quantizing both the preconditioner and the descent direction at each step of the algorithms, while controlling their convergence rate. We also validate our findings experimentally, showing faster convergence and reduced communication relative to previous methods.


翻译:我们调查了如何利用快速和通信效率的算法来尽量减少在美元不同节点之间分配的强固和顺畅功能之和的典型问题,这些功能可以使用有限的位数进行交流。以前,这个问题的通信效率方法大多限于第一阶优化,因此对通信复杂程度的条件数的依赖性是 emph{linear}。我们表明这种依赖性并非内在的:通信效率方法实际上可以对条件数有亚线依赖性。为此,我们设计和分析通用线性模型和牛顿方法中第一个具有先决条件的、具有通信效率的梯度下降变量。我们的结果依赖于一种新技术,在控制其趋同率的同时,对预设物和每个步骤的下降方向进行量化。我们还实验性地验证了我们的调查结果,显示比以往方法更快的趋同和通信量减少。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
专知会员服务
15+阅读 · 2020年7月27日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
专知会员服务
15+阅读 · 2020年7月27日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员