Active learning in semi-supervised classification involves introducing additional labels for unlabelled data to improve the accuracy of the underlying classifier. A challenge is to identify which points to label to best improve performance while limiting the number of new labels. "Model-change" active learning quantifies the resulting change incurred in the classifier by introducing the additional label(s). We pair this idea with graph-based semi-supervised learning methods, that use the spectrum of the graph Laplacian matrix, which can be truncated to avoid prohibitively large computational and storage costs. We consider a family of convex loss functions for which the acquisition function can be efficiently approximated using the Laplace approximation of the posterior distribution. We show a variety of multiclass examples that illustrate improved performance over prior state-of-art.
翻译:在半监督分类中积极学习需要为未贴标签的数据增加标签,以提高基本分类器的准确性。 一项挑战是如何确定哪些标签可以最佳地改进性能,同时限制新标签的数量。 “ 模式改变” 积极学习通过引入附加标签来量化分类器发生的变化。 我们用基于图形的半监督学习方法来配对这个想法,这些方法使用图解 Laplacian 矩阵的频谱,这些光谱可以缩短,以避免过高的计算和存储成本。 我们考虑使用远端分布的 Laplace 近似值来有效估计获取功能的 convex 损失函数组合。 我们展示了各种多类例子,说明比以往的艺术状态更好的性能。