Infant motion analysis is a topic with critical importance in early childhood development studies. However, while the applications of human pose estimation have become more and more broad, models trained on large-scale adult pose datasets are barely successful in estimating infant poses due to the significant differences in their body ratio and the versatility of their poses. Moreover, the privacy and security considerations hinder the availability of adequate infant pose data required for training of a robust model from scratch. To address this problem, this paper presents (1) building and publicly releasing a hybrid synthetic and real infant pose (SyRIP) dataset with small yet diverse real infant images as well as generated synthetic infant poses and (2) a multi-stage invariant representation learning strategy that could transfer the knowledge from the adjacent domains of adult poses and synthetic infant images into our fine-tuned domain-adapted infant pose (FiDIP) estimation model. In our ablation study, with identical network structure, models trained on SyRIP dataset show noticeable improvement over the ones trained on the only other public infant pose datasets. Integrated with pose estimation backbone networks with varying complexity, FiDIP performs consistently better than the fine-tuned versions of those models. One of our best infant pose estimation performers on the state-of-the-art DarkPose model shows mean average precision (mAP) of 93.6.


翻译:婴儿运动分析是幼儿早期发育研究中一个至关重要的专题,然而,虽然人类构成估计的应用越来越广泛,但关于大规模成人构成数据集的培训模型几乎无法成功地估计婴儿构成数据集,因为其身体比重差异很大,而且其容貌多才多才多艺;此外,隐私和安全方面的考虑妨碍提供婴儿从头到尾训练稳健模型所需的适当数据;为解决这一问题,本文件介绍了:(1) 建立并公开发布混合合成和真实婴儿构成(SyRIP)数据集,该数据集包含小但多样的真实婴儿图像以及生成的合成婴儿成像;(2) 多阶段演化说明学习战略,能够将来自邻近成人成形和合成婴儿图像领域的知识转移到我们精心调整的域对称婴儿构成模型(FiDIP)估计模型。 在我们的实验室研究中,以相同的网络结构对SyRIP数据集进行了培训,该模型显示比其他公共婴儿构成数据集所培训的数据集有明显改进。 结合复杂程度不同的估计主干网,FiDIP对婴儿的精确度和合成婴儿图像进行了持续改进。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
专知会员服务
110+阅读 · 2020年3月12日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2020年7月16日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Arxiv
5+阅读 · 2018年4月13日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员