Alchemist is a system that allows Apache Spark to achieve better performance by interfacing with HPC libraries for large-scale distributed computations. In this paper, we highlight some recent developments in Alchemist that are of interest to Cray users and the scientific community in general. We discuss our experience porting Alchemist to container images and deploying it on Cray XC (using Shifter) and CS (using Singularity) series supercomputers and on a local Kubernetes cluster. Newly developed interfaces for Python, Dask, and PySpark enable the use of Alchemist with additional data analysis frameworks. We also briefly discuss the combination of Alchemist with RLlib, an increasingly popular library for reinforcement learning, and consider the benefits of leveraging HPC simulations in reinforcement learning. Finally, since data transfer between the client applications and Alchemist are the main overhead Alchemist encounters, we give a qualitative assessment of these transfer times with respect to different~factors.


翻译:Apache Spark 是一个系统,它使Apache Spark 能够通过与HPC 图书馆互连而取得更好的业绩,以便进行大规模分布式计算。在本文中,我们强调了对Cray用户和科学界感兴趣的Alchemist 近期的一些发展动态。我们讨论了我们的经验,将Alchemist 移植到容器图像中,并在Cray XC(使用 Shifter)和CS(使用奇数)系列超级计算机以及本地Kubernetes集群上部署。新开发的Python、Dask和PySpark的界面使Alchemist 能够使用更多的数据分析框架。我们还简要讨论了Alchemist 与RLlib(一个越来越受欢迎的强化学习图书馆)的结合,并审议了利用HPC模拟加强学习的好处。最后,由于客户应用程序和Alchemist 之间的数据传输是主要的间接Alterchemist 遭遇,我们从质量上评估不同用户的转移时间。

0
下载
关闭预览

相关内容

Dask是一个并行计算库,能在集群中进行分布式计算,能以一种更方便简洁的方式处理大数据量,与Spark这些大数据处理框架相比较,Dask更轻。Dask更侧重与其他框架,如:Numpy,Pandas,Scikit-learning相结合,从而使其能更加方便进行分布式并行计算。
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
【电子书推荐】Data Science with Python and Dask
专知会员服务
43+阅读 · 2019年6月1日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Arxiv
5+阅读 · 2018年6月12日
VIP会员
相关VIP内容
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
【电子书推荐】Data Science with Python and Dask
专知会员服务
43+阅读 · 2019年6月1日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Top
微信扫码咨询专知VIP会员